注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

东月之神

在单纯的观念里面,生命就容易变得比较深刻!

 
 
 

日志

 
 
关于我

别驻足,梦想要不停追逐,别认输,熬过黑暗才有日出,要记住,成功就在下一步,路很苦,汗水是最美的书!

网易考拉推荐

并查集  

2010-03-13 19:16:03|  分类: ACM |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
并查集:(union-find sets)是一种简单的用途广泛的集合. 并查集是若干个不相交集合,能够实现较快的合并和判断元素所在集合的操作,应用很多,如其求无向图的连通分量个数、最小公共祖先、带限制的作业排序,还有最完美的应用:实现Kruskar算法求最小生成树。其实,这一部分《算法导论》讲的很精炼。

       一般采取树形结构来存储并查集,在合并操作时可以利用树的节点数(加权规则)或者利用一个rank数组来存储集合的深度下界--启发式函数,在查找操作时进行路径压缩使后续的查找操作加速。这样优化实现的并查集,空间复杂度为O(N),建立一个集合的时间复杂度为O(1),N次合并M查找的时间复杂度为O(M Alpha(N)),这里Alpha是Ackerman函数的某个反函数,在很大的范围内这个函数的值可以看成是不大于4的,所以并查集的操作可以看作是线性的。
它支持以下三种操作:
  -Union (Root1, Root2) //合并操作;把子集合Root2和子集合Root1合并.要求:Root1和 Root2互不相交,否则不执行操作.
  -Find (x) //搜索操作;搜索元素x所在的集合,并返回该集合的名字--根节点.
  -UFSets (s) //构造函数。将并查集中s个元素初始化为s个只有一个单元素的子集合.
  -对于并查集来说,每个集合用一棵树表示。
  -集合中每个元素的元素名分别存放在树的结点中,此外,树的每一个结点还有一个指向其双亲结点的指针。  
       -为简化讨论,忽略实际的集合名,仅用表示集合的树的根来标识集合。

以下给出我的两种实现:

//Abstract: UFSet                 

//Author:Lifeng Wang Fandywang

// Model One Model 2 路径压缩方式不同,合并标准不同

const int MAXSIZE = 500010;

int rank[MAXSIZE];    // 节点高度的上界

int parent[MAXSIZE]; // 根节点

int FindSet(int x){// 查找+递归的路径压缩

    if( x != parent[x] ) parent[x] = FindSet(parent[x]);

     return parent[x];

}

void Union(int root1, int root2){

     int x = FindSet(root1), y = FindSet(root2);

     if( x == y ) return ;

     if( rank[x] > rank[y] ) parent[y] = x;

     else{

         parent[x] = y;

         if( rank[x] == rank[y] ) ++rank[y];

     }

}

void Initi(void){

     memset(rank, 0, sizeof(rank));

     for( int i=0; i < MAXSIZE; ++i ) parent[i] = i;

}

// Model Two

const int MAXSIZE = 30001;

int pre[MAXSIZE]; //根节点i,pre[i] = -num,其中num是该树的节点数目;

                   //非根节点j,pre[j] = k,其中kj的父节点

int Find(int x){//查找+非递归的路径压缩

     int p = x;

     while( pre[p] > 0 )    p = pre[p];

     while( x != p ){

         int temp = pre[x]; pre[x] = p; x = temp;

     }

     return x;

}

void Union(int r1, int r2){

     int a = Find(r1); int b = Find(r2);

     if( a == b ) return ;

     //加权规则合并

     if( pre[a] < pre[b] ){

         pre[a] += pre[b]; pre[b] = a;

     }

     else {

         pre[b] += pre[a]; pre[a] = b;

     }

}

void Initi(void)

{

    for( int i=0; i < N; ++i ) pre[i] = -1;

}    

  评论这张
 
阅读(157)| 评论(0)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017